497 research outputs found

    Americanizing America: Irving Berlin\u27s Influence On His Adopted Culture

    Get PDF

    Global Increase in UV Irradiance during the Past 30 Years (1979-2008) Estimated from Satellite Data

    Get PDF
    Zonal average ultraviolet irradiance (flux ultraviolet, F(sub uv)) reaching the Earth's surface has significantly increased since 1979 at all latitudes except the equatorial zone. Changes are estimated in zonal average F(sub uv) caused by ozone and cloud plus aerosol reflectivity using an approach based on Beer's law for monochromatic and action spectrum weighted irradiances. For four different cases, it is shown that Beer's Law leads to a power law form similar to that applied to erythemal action spectrum weighted irradiances. Zonal and annual average increases in F(sub uv) were caused by decreases in ozone amount from 1979 to 1998. After 1998, midlatitude annual average ozone amounts and UV irradiance levels have been approximately constant. In the Southern Hemisphere, zonal and annual average UV increase is partially offset by tropospheric cloud and aerosol transmission decreases (hemispherical dimming), and to a lesser extent in the Northern Hemisphere. Ozone and 340 nm reflectivity changes have been obtained from multiple joined satellite time series from 1978 to 2008. The largest zonal average increases in F(sub uv) have occurred in the Southern Hemisphere. For clear-sky conditions at 50 S, zonal average F(sub uv) changes are estimated (305 nm, 23%; erythemal, 8.5%; 310 nm, 10%; vitamin D production, 12%). These are larger than at 50 N (305 nm, 9%; erythemal, 4%; 310 nm, 4%; vitamin D production, 6%). At the latitude of Buenos Aires, Argentina (34.6 S), the clear-sky Fuv increases are comparable to the increases near Washington, D. C. (38.9 N): 305 nm, 9% and 7%; erythemal, 6% and 4%; and vitamin D production, 7% and 5%, respectively

    Miss Jay Herman to Mr. Meredith (1 October 1962)

    Get PDF
    https://egrove.olemiss.edu/mercorr_pro/1382/thumbnail.jp

    Autoimmunity in transfusion babesiosis: a spectrum of clinical presentations.

    Get PDF
    Transfusion-acquired babesiosis can be an asymptomatic or self-limited febrile hemolytic illness in a healthy host. A persistent, relapsing, and/or fulminant course with the development of life-threatening complications may be seen in immunocompromised or splenectomized patients. As in malaria, erythrocyte parasitemia is often associated with nonimmune hemolysis, and can be treated with erythrocytapheresis. Just as warm autoantibodies have been reported in malaria infection, the development of autoantibody-mediated immune hemolysis has been reported in babesiosis. We treated a previously healthy male with multiple injuries from a motor vehicle accident necessitating massive transfusion. Late in the hospitalization, his blood smear revealed Babesia microti, confirmed by PCR study and serology. This was eventually traced to a unit of blood from an asymptomatic blood donor that was transfused during his initial trauma care. Specific antibiotic therapy was begun, and severe hemolysis from a high parasite burden required red blood cell exchange which led to rapid abatement of the hemolysis. He had a positive DAT (IgG with a pan-reactive eluate) but no serum autoantibody. This persisted for 10 days following cessation of hemolysis, and became negative while still on antibiotics while his parasite burden became undetectable. Reports of autoimmunity associated with community acquired babesiosis often have severe hemolysis from their autoantibodies, but our case shows that autoantibodies may also follow transfusion-acquired babesiosis. The nature of the autoantigen is unknown

    Pandora Operation and Analysis Software

    Get PDF
    Pandora Operation and Analysis Software controls the Pandora Sun- and sky-pointing optical head and built-in filter wheels (neutral density, UV bandpass, polarization filters, and opaque). The software also controls the attached spectrometer exposure time and thermoelectric cooler to maintain the spectrometer temperature to within 1 C. All functions are available through a GUI so as to be easily accessible by the user. The data are automatically stored on a miniature computer (netbook) for automatic download to a designated server at user defined intervals (once per day, once per week, etc.), or to a USB external device. An additional software component reduces the raw data (spectrometer counts) to preliminary scientific products for quick-view purposes. The Pandora systems are built from off-the-shelf commercial parts and from mechanical parts machined using electronic machine shop drawings. The Pandora spectrometer system is designed to look at the Sun (tracking to within 0.1 ), or to look at the sky at any zenith or azimuth angle, to gather information about the amount of trace gases or aerosols that are present

    Aerosol Retrieval and Atmospheric Correction Algorithms for EPIC

    Get PDF
    EPIC is a multi-spectral imager onboard planned Deep Space Climate ObserVatoRy (DSCOVR) designed for observations of the full illuminated disk of the Earth with high temporal and coarse spatial resolution (10 km) from Lagrangian L1 point. During the course of the day, EPIC will view the same Earth surface area in the full range of solar and view zenith angles at equator with fixed scattering angle near the backscattering direction. This talk will describe a new aerosol retrieval/atmospheric correction algorithm developed for EPIC and tested with EPIC Simulator data. This algorithm uses the time series approach and consists of two stages: the first stage is designed to periodically re-initialize the surface spectral bidirectional reflectance (BRF) on stable low AOD days. Such days can be selected based on the same measured reflectance between the morning and afternoon reciprocal view geometries of EPIC. On the second stage, the algorithm will monitor the diurnal cycle of aerosol optical depth and fine mode fraction based on the known spectral surface BRF. Testing of the developed algorithm with simulated EPIC data over continental USA showed a good accuracy of AOD retrievals (10-20%) except over very bright surfaces

    Cloud Height Retrieval with Oxygen A and B Bands for the Deep Space Climate Observatory (DSCOVR) Mission

    Get PDF
    Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed

    Potential Scientific Output from the Visible Channels of EPIC Spectroradiometer as Part of the DSCOVR L1 Mission

    Get PDF
    In addition to 4 UV channels, the EPIC spectroradiometer will provide measurements at 6 visible (and near IR) channels (443,551,680,687.75, 764 and 779.9 nm) at roughly 10 km spatial resolution. The scattering angles are near backscattering and vary between 165 and 176 degree. Two pairs {680 and 687.75 nm} and {764 and 779.9 nm} represent 02 B- and A-bands (and their references) channels; they will be used for cloud height measurements over land and ocean. The B-band channel will contribute to the more absorbing A-band measurements over bright vegetation. A pair {680 and 779.9 nm} will be used for retrieving vegetation properties. Due to the special EPIC geometry, the illuminated part of the leaves will be always observed. As a result, in additional to the traditional Leaf Area Index (LAI), these observations for the first time will provide the sunlit fraction of LAI. Since the sunlit and shaded leaves exhibit different photosynthetic response to incident radiation, these measurements will help to improve global ecological and biogeochemistry models. Finally, a pair {443 and 551 nm} will be used for atmospheric correction. As a by-product of the atmospheric correction algorithm, we also expect to get aerosol optical thickness (AOT) and surface bidirectional reflection function (BRF). The presentation will briefly overview the proposed science algorithms

    Characterization and analysis of the Nimbus-7 SBUV data in the non-sync period (February 1987 - June 1990)

    Get PDF
    The SBUV instrument, on Nimbus-7, measures the backscatter ultraviolet radiance at 12 wavelengths. The radiance data from these wavelengths was used to deduce the ozone profile and the total column ozone. In February 1987, there was an instrument malfunction. The purpose of this paper is to describe the malfunction, to determine the effect of the malfunction on the data quality, and if possible, to correct for the effects of the malfunction on the data from the SBUV instrument
    • …
    corecore